
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

N VLSI Memo No. 89-509
N March 1989

CV)

00
o Approaches to Multi-Level Sequential Logic Synthesis D T IC

8Af ELECTE D

Srinivas Devadas MAY 2 41989

Abstract

In this paper we presentfapproaches to multi-level sequential logic synthesis - algorithms
and techniques for the area and performance optimization of interconnected finitc state
machine descriptions.

Interacting finite state machines are common in industrial chip designs. While
optimization techniques for single finite state machines are relatively well developed, the
problem of optimization across latch boundaries has received much less attention.
Techniques to optimize pipelined combinational logic so as to improve area/throughput
have been proposed. However, logic cannot be straightforwardly migrated across latch
boundaries when the basic blocks are sequential rather than combinational circuits.

We present new techniques for the exploitation of sequential don't cares in arbitrary,
interconnected sequential machine structures. Exploiting these don't care sequences can
result in significant improvements in area and performance. We address the problem of
migrating logic across state machine boundaries so as to make particular machines less
complex at the possible expense of making others more complex. This can be useful from
both an area and performance point of view. We present new optimization algorithms that
incrementally modify state machine structures across latch boundaries. We discuss the use
of more global state machine decomposition and factorization algorithms for area
optimization. Finally, we present experimental results using these algorithms on sequential
circuits.

MVrosystems Massachusetts Carhridge Telephone
Research Center Insttute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

VII

LI)I
,A,." es twl FO-

..... ... -. "-'-...-.-.-

D st

C)I

Acknowledgements,

To appear in Proceedings, 26th Design Automation Conference, Las Vegas, Nevada, June
26-29, 1989. This work was supported in part by the Defense Advanced Research Projects
Agency under contract number N00014-87-K-0825.

Author Information

Devadas: Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge,
MA 02139. (617) 253-0454.

Copyright* 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Approaches to Multi-Level
Sequential Logic Synthesis

Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Abstract represented by State Transition Graphs, algorithms
that encode the internal states of the machines, takingIn this paper, we present approaches to multi-level se- into account their interactions, do not exist to date. If

quential logic synthesis - algorithms and techniques for indeed, the machines are encoded separately, disregard-
the area and performance optimization of interconnected ing their interconnectivity, a sub-optimal state assign-
finite state machine descriptions. ment can result (and generally does).

Interacting finite state machines are common in in- Traditionally, the decomposition of an initial circuit
dustrial chip designs. While optimization techniques Trationainthe e ratin seqntial circuitfor inge fnitestae mchies ae rlatvelywel deel- specification into smaller, interacting sequential circuits
for single finite stale machines are relatively well devel- has been performed by the logic designer. Once aoped, the problem of optimization across latch bound- decomposition has been performed, it is almost never
aries has received much less attention. Techniques to changed and logic synthesis tools operate on separate
optimize pipelined combinational logic so as to im- logic blocks independently. Unfortunately, there are no
prove area/throughput have been proposed. However,
logic cannot be straightforwardly migrated across latch guarantees regarding the quality of the initial decom-position, in terms of mininmality of communication be-
boundaries when the basic blocks are sequential rather tween the machines and/or complexities of the individ-
tha combinational circuits.

We present new techniques for the exploitation of se- ual machines. There exist automatic techniques that
quential don't cares in arbitrary, interconnected sequen- can decompose lumped sequential circuits into smaller,
tial machine structures. Exploiting these don't care se- interacting ones (e.g. [5]). These techniques are limited
quences can result in significant improvements in area in the topology of interconnections that can be achieved
and performance. We address the problem of migating and severely limited in their capabilities of handling cir-
logic across state machine boundaries so as to make par- cuits of large size. Flattening the initial, distributed
ticular machines less complex at the possible expense of specification can result in a very large lumped circuit.
making others more complex. This can be useful from Efficient and flexible algorithms for re-partitioning in-
both an area and performance point of view. We present teracting sequential circuits for area and performance
new optimization algorithms that incrementally modify optimization have not been proposed in the past. Work

ate m.Achine s ucturel tcloss latch boundaries. We has been done in re-partitioning pipelined combina-Iscuss the use oImore globai state machine decomposi- tional logic stages (e.g. [6]). There is no restriction
tion and factorization algorithms for area optimization. on migrating logic across latch boundaries when the ba-
Finally, we present experimental results using these al- sic blocks are combinat;-ial, provided the latches are
gorithms on sequential circuits. not observable - the L. tionality of the circuit is un-

1 Introduction changed by moving say, one gate from before to after
Interacting finite state machines (FSMs) are common in a latch. However, when sequential circuits are inter-
chips being designed today. The advantages of a hier- connected, as shown in Figure 1, one cannot arbitrarily
archical, distributed-style specification and realization move logic across pipeline latch boundaries (We refer to
are many. While the terminal behavior of any set of in- flip-flops that store state as state latches and flip-flops
terconnected sequential circuits can be modeled and/or that store intermediate values as pipeline latches). The
realized by a lumped circuit, the former can be consider- functionality and terminal behavior of the circuit will
ably more compact, as well as being easy to understand be changed, even thoug the latches are not observable.
and manipulate. One wishes to be abe to migrate logic across pipeline

Ttch boundajies for severp! reasons. The duration ofThe disadvantages of this form of specification from the system clock has to be greater t the longest
a CAD point of view are that sequential logic synthesis path between any two pipeline stages. If a machine,
algorithms are generally restricted to operate on lumped A, is significantly more complex than another machine
circuits. State assignment algorithms (e.g. [1], [8], [3]), B, the critical path/system clock may be unnecessarily
for instance, almost exclusively ope;ate on single finite long. The clock cycle could be shortened by making A
state machines. Given a set of interacting machines less complex at the possible expense of making B more

complex. In the best case, the complexities of both A
anj B wrould decrease.

Another very important issue is the specification and
exploitation of d ,-, cares in interconnected FSM de-
scriptions. For ', .:iple, in Figure 1, certain binary
combinations may never appear at the set of latches
Ll. This will correspond to an incompletely specified
machine B. These don't cares can be exploited us-
ing standard state minimization strategies [9]. A more
complicated form of don't care, referred to here as a se-

PO The values taken by each bit can be 1, 0 or 2 (don't
care), signifying the true form, negated form and non-

N L existence respectively of the variable corresponding tf
that position. A minterm is a cube with only 0 and RW
ent les.Th dis s n ce between two ftterms is deftned
as te nu nuer or blt positions they rimer i. Acurec1

L is said to cover another cube c2 (written as cl D C2)
if for each bit position, the entry in ci is equal to the2 entry in C or is a 2.

A finite state machine, M, is represented by its StatePO Transition Graph (STG), G(V, E, W(E)) where V is
the set of vertices corresponding to the set of states SM,
where ISMII is the cardinality of the set of states of the
FSM, E the set of transition edges in M and W(E) are
the Boolean expressions corresponding the input and
output combinations for E. The number of inputs and
outputs are denoted N, and No respectively. The input

Figure 1: Interacting Finite State Machines combination and present state corresponding to an edge
are denoted (i, s) E E, where i and s are cubes. The
fanin and output of (i, s) are denoted fanin(i, s) E V

quential don't care, corresponds to an input sequence of and output(i, s) respectively. The complete set of fanin
vectors, say 1111, 1011, 1000 that does not appear at and fanout edges of a state s are denoted fanin(s) and
Li, though each of the separate vectors do appear. Se- fanout(s). The fanin state, fanout state and output
quential don't cares are more difficult to exploit. These of an edge el are denoted ei- > fanin, el- > fanout
don't cares are due to the limited controllability of B and eI- > output respectively. The set of fanin (fanout)
and can be used to optimize B. There are also other edges of a state, q, is denoted EFI(q) (EFo(q)).
don't cares related to the limited observability of A. A starting or initial state is assumed to exist for

In this paper, we present new algorithms for the sys- a machine, M, also called the reset state and denoted
tematic exploitation of sequential don't cares resulting RM. A distinguishing sequence for a pair of states
from the limited observability of a drivint machine and q, q2 E SM is a sequence of input vectors such that the
the limited controllability of a driven mac ine. We show last vector produces different outputs when the sequence
that exploiting either set of don't cares can significantly is applied to M, when M is initially in ql or when M
reduce the number of states and complexity of the driv- is initially in q2. Two states q1, q2 in a machine M are
ing and driven machines. A set of interacting machines equivalent (written as qf qt), if they do not posses
can be iteratively optimized using these don't care sets. asuising seqence.

We also present new techniques for the area and per- a distinguishing sequence.
formance optimization of interacting machines, via the A differentiating sequence for a pair of states
migration of logic across latch boundaries. If a machine q1, q2 E SM is a sequence of input vectors such that
A drives machine B, our techniques can be used to re- some vector (or vectors) in the sequence produces differ-
duce the number of states and complexity of A at the ent outputs when the sequence is applied to M initially
possible expense of increasing the complexity of B (the in q, or initially in q2 and at the end of the sequence

M reaches the same final state. The pair of edges cor-number of states in B remains constant). Similarly, the responding to each input vector in a distinguishing or
number of states in B can be reduced using comple- differentiating sequence are called co-edges.
mentary techniques. Re-encoding algorithms that Mii- A sequence of vectors VS1 is said to contain another
mize the areas of A and B, by changing the encoding of sequence2 (written as VS1 i VS 2), if VS 2 appears
the intermediate lines, have also been developed. These in VS .
techniques are incremental, fast and have small mem- i SA.
ory requirements. They can be used to speed up the A A a Fd dtriving-achine A and-- i o ive
system clock and/or minimize area, in conjunction with machine.
the algorithms for don't care exploitation. We present
experimental results on several examples that illustrate 3 Sequential Don't Cares
the efficacy of the proposed algorithms. In Figure 1, we have a machine A driving another ma-

Basic definitions and notations used are given in Sec- chine B via a set of latches Li (We neglect C for the
tion 2. Different types of sequential don't cares are de- moment). For the purposes of the discussion here, we
scribed in Section 3. Systematic methods for the ex- mome th e p s the discusson here, we
ploitation of these don't cares are presented. Migration M practice, a lls the latc e hes may e observ-
of logic across latch boundaries is the subject of Sec- able. However, the don't care exploitation techniques
tion 4. When a machine A receives inputs from another described here are easily modified to the general case.
machine B, modifications to the intermediate lines that We assume that a State Transition Graph description
carry information from B to A can change the complex- exists for both machines A and B. Let the number of in-
ities of A and B. In Section 5, we present preliminary termediate/pipeline latches in Li be N. A may or may
experimental results using these techniques on some ex- not assert all 2 N possible output combinations. If a cer-
amples. tain binary combination, cl never appears at Li, then

2 Preliminaries B will be incompletely specified - the transition edges
A cube in the Boolean n-space corresponding to a logic corresponding to an input of cl need not be specified,0
funtion is writtea As a bit vector on a set of variabTes whatever state B is in (We don't care what happens
wit each bit position representing a distinct variable. when B receives the input cl). The more general case

-0/1 -0/0 An approach to exploit don't cares based on Lemma
3.1 would entail producing all distinguishing sequences
for every pair of states in B and checking fr the con-

01/0 -0/1 tainment condition. Pairs satisfying the condition can
S1 be merged. This is potentially very time consuming; a

-0/1pair of states may have many distinguishing sequences
and we have to find them for every possible pair. A11/0 11/0 more efficient approach is now outlined.

In this approach, given a set of don't care sequences,
s3 s4 B is transformed into a new machine B! which hrsa greater number o states, but is more mncompletely

0/0 specified than B. B' is state minimized to obtain B"
11/0 11/1 /0 (SB"(I < IISB. The pseudo-code below illustrates

1 the procedure.
S5 s6 exploit-input-dc(B, DC):

(11, 11) B' = B;
foreach (don't care sequence DC) { B

Figure 2: Sequential Don't Cares foreach (depth-first path P = e, .. eK E B') {
if(PD DCi) {

for(i= 2; i < K; i = i+1) {
is when a certain combination c2 never appears at Li, si = e1- > fanout ;
when B is in some set of states QE E SB (SB is the make states s' and s'fan in~ ei-I
set of all states B can be in). It does appear when B is fanms) =fanin(s,) - e-1
in states other than QB. In this case, the states in QB fann(s)) deletes,'
will have c2 unspecified (If an edge on c2 exists in Q.6, If i < K')
it can be removed). This type of don't care can be ens- fanout(s) = fanout(s')
ily exploited via the use of standard state minimization = fanout(si) ;
algorithms that handle incompletely specified machines else {
[9].anout si)=

A more complicated sequential don't care is associ- f anout~s,, = fanout(s) -

ated with vector sequences that never appear at L1,. though all 2 N separate vectors appear. A does not delete si
produce all possible output sequences. This type of I
don't care does not have a straightforward interpreta- }
tion. Edges in the State Transition Graph of B cannot I
be removed or left unspecified. In Figure 2, a State }
Transition Graph corresponding to a possible B ma- B" = state-minimize (B'
chine is shown. The machine is state minimal. We
assume that each transition edge in B is irredundant,
i.e. B makes every transition with appropriate input The procedure is effectively producing a machine
sequences. A don't care input sequence is shown be- where the don't care sequences are not specified, but
low the Graph. Such a don't care sequence implies that otherwise has the same functionality as the original ma-
certain sequences of transitions will not be made by B. chine. This means that if any two states in B satisfy

A don't care input sequence is assumed to have a the conditions of Lemma 3.1, these two states will not
length greater than 1. Given a don't care sequence DC, th e ditin s hingL e que e in stand will t
all sequences SE such that SE D DC are also don't care possess a distinguishing sequence in B' and will thus
sequences. We define an atomic don't care sequence be compatible during state minimization. A smaller
as one that does not contain any other don't care se- machine B" will be obtained after state minimization.
quence. Thus, any subsequence of an atomic don't care When i = p < K in the for loop above, the fanout
sequence is a care sequence. In the sequel, we consider of sp is duplicated for the states s, and s" - the edge
only atomic don't care sequences. ep is also duplicated. Hence, at the next iteration, one

Given a set of sequences that a driving machine never of the ep fans into s ,+1 and the other ep (as well as the
asserts, our problem lies in exploiting this form of don't remaining fanout edges from sp, a P+
care, so as to optimize B. In the general case, we will An illustrative example is given in Figures 2, 3 and
have a set of don't care sequences. We can state the 4. The machine and the don't care sequence of Figure 2
following lemma. produce an expanded machine, shown in Figure 3. State

Lemma 3.1 : Given a machine B and a set of don't minimizing this machine produces the result of Figure
care sequences DCj , 1 < j < NA, if two states in B, 4, which has one less state than the original machine of
sl and s2 have distinguishing sequences 1i , 1 < i < ND Figure 2. States s3', s4' and s4" merge and so do sl
such that for each k, Ik D DC, for some 1, then sl and and s2.
s2 are equivalent in B under the DCj. The sequential don't cares discussed thus far are a

product of the constrained controllability of the driven
Proof: Since the DCj can never occur, it means the I, machine B in a cascade A - B. There is another
can never occur. Therefore, sl and s2 in B are equiva- type of don't care due to the constrained observability
tent under DC,. Q.E.D. of the driving machine A. We focus on the individually

1il sal sa2 INTl INT1 qbl qb2 out1
S11 11/ s2 i2 sal sa3 INT2 INT2 qbl qb3 out2

1- il sa2 sal INT2 INT1 qb2 qb2 out3
/0 01/0 2 sa2 sa3 INTl INT2 qb2 qb2 out3

ii sa3 sal INT1 INT1 qb3 qb2 out4
Si2 sa3 sa2 INTl INT2 qb3 qb3 outi

11//,, 0/0 -0/0 A 7 B

. /0 1 AFigure 5: Output Expansion

-0/0 edge outputs represented as arbitrary Boolean expres-
sions (multiple cubes).

Figure 3: Expanding the Original Machine output-expansion(A, B):
{

-0/1 -0/0 foreach (edge el E A) {
OUT(e1) = universe

i foreach (state q, E SB) {
0-0/1 if (B can be in q, as A asserts ej) {

01 0find largest set of output combinations
cl 3 cl 2 el- > output && fanin(ci, qi),

outrt(cl, ql are uni ue
s3 s4 OUT(el) = OUT(ei) cl;

11/0 -0/ 11/ ei- >output = OUT(ei)

S5 S6 A transition edge el in A is picked. The set of states
that B can be in when A makes this transition is found.

-0/0 Given this set of states, the largest cube (or set of out-
put combinations) that covers the output of the edge

Figure 4: Machine after State Minimization and produces a unique next state and a unique output
when B is in any one of the possible states is found (cor-
responds to OUT(ei)). The output of el is expanded
to the cube. The process is repeated for all edges in A.

state minimized tables of Figure 5. The intermediate the stae m i proc edr prpoed in [9

inputs/outputs have been given symbolic codes. Given The state minimization procedure proposed in [9]
that A feeds into B, it is quite possible that for some can be used for incompletely specified finite state ma-

transition edge ei E A, it does not matter if the output chines. However, after output expansion, we may have a

asserted by this particular transition edge is, say, INTi multiple-output FSM in which a transition edge has an
or INTj. In fact, in Figure 5, the 3rd transition edge output that can belong to a subset of symbolic or binary
can be either INT1 or INT2, without changing the ter- values, rather than the universe of possible values (as in
minal behavior of A -- B (We assume that there are the incompletely specified case). In the case of multi-
no latches between A and B, the starting state of A is pie cubes or Boolean expressions specifying the output
sal and the starting state of B is qbl). This is a don't combinations for fau.ut edge, an additional check has
care condition on A's outputs. It is quite possible that to be performed during Aate minimization during the

making use of these don't cares can reduce the number selection of the compatibility pairs to see if three or

of states in A. In fact, if one replaced the output of the more sets of states can, in fact, be merged, preserving
3rd edge in A (Figure 5) by INTl instead of INT2, functionality. This is because the pairwise intersectionwe would obtain one less state after state minimization of the Boolean expressions corresponding to the fanout(sa becomes equivalent to sas). edges of these states may each be non-null, resulting in acompatibility relation butween each pair of states, but

Given a cascade A -. B, we give below a systematic the three-way intersection may be null, implying that
procedure to detect this type of don't care, i.e. ex- the three states cannot be merged.
pand the output of each transition edge of A to the set When we have a set of interconnected machines as in
of all possible values that it can take while maintain- Figure 1, the don't cares co rresponding to each cascade
ing the terminal behavior of A - B. Standard state can be iteratively used. For instance, in Figure 1, A
minimization procedures can exploit don't care outputs, drives B. The outputs of A's edges can be expanded
represented as cubes. However, state minimization pro- first. A's output don't care sequences can be used too
cedures have to be modified in order to exploit transition optimize B. Next, one can focus on B -- C. Output

expansion can be performed on B and so on.

4 Optimization Across Latch ber of states in A remains constant. The complexity of
A may increase, since A now asserts a larger number

Boundaries of distinct symbolic outputs. Even if a particular sym-
bolic implicant appears in front of every distinguishing

4.1 Introduction sequence of a pair of states in B, it is not always posi-
A set of interacting machines can be optimized using ble to reduce the number of states in B. The following
their associated don't cares as described in the previous theorem is a statement of the required conditions.
section. If the initial decomposition is not an intelligent
one, there will be a large set of don't cares associated Theorem 4.1 : Given a cascade A --- + B, let the dis-
with each pair of driving and driven machines. While tinguishing sequences for a pair of states qj, q2 E QB
exploiting don't cares has the effect of removing redun- be DSI, DS2, .. DSM. Let the distinct first vec-
dancy, the overall decomposition of logic functionality tors in the DS be ol, o2, . ON. When B is in q,
between the various circuits remains the same. As men- (q2), let the possible transition edges that A has just
tioned earlier, there are several attractions in being able made be E(A, B=f,) (E(A, B=q2)). Ejl E E(A, Bfql)

to migrate logic from one machine to another. In this and Ej2 E E(A, B=fq2) are the sets of edges that assert
section, we will present incremental techniques that o- oj, V j. If E, n E 2 = , 1 <j <N, then q, and
tirnize cascaded pairs of machines via logic migration. 92 can be merged in B.
These techniques are iteratively applied in the geieral
case of interacting machines (like in Figure 1). Proof: We make the outputs of E.i o'2 6 o- (and dis-

tinct from all other symbolic implicants). This means
4.2 Re-encoding that when B is in q, it will never receive o, 1 < j < N.
Consider the cascaded pair of Figure 5. The intermedi- Similarly, when B is in q2 it never receives o'j, 1 <
ate line values have been represented by symbolic codes. j _< N. The first vector in each distinguishing sequence
The complexities of the machines are affected by the en- DS, 1 < i < M, is invalidated. Therefore. ql = q2.
coding of these lines. A good output encoding for A will Q.E.D.
produce minimal complexity. However, a good output
encoding for A may not be a good input encoding for B For states other than q1 , q2 E QB, o'j is made to
and vice versa. Thus, tradeoffs exist. produce the s'me next state and outputs as oj, V j.

We propose re-encoding as a means of migrating logic N = 1 is the simplest case of state reduction.
between the two machines by exploring these tradeoffs. This technique is essentially splitting the symbolic
If the initial specification of the intermediate lines is outputs of machine A and introducing new don't care
binary (rather than symbolic), the specification is con- sequences to B. These don't care sequences are then

* verted into a symbolic representation. For instance, one used to reduce the complexity of B. The above theo-
might view the machines of Figure 5 as being derived rem has a straightforward practical interpretation. For
from a logic implementation where INT1 had a code optimization purposes, we focus on symbolic implicants
100, INT2 had a code 010 and so on. We can re-encode that appear most frequently as first vectors in distin-
these lines in different ways to tune the complexities of guishing sequences for different pairs of states. The edge
A and B. Re-encoding can be performed before or after disjointness condition of Theorem 4.1 is checked for and
state assignment. the implicants split if the condition is satisfied, so as to

If one wished to reduce B's complexity, the intermedi- reduce the number of states in B.
ate symbolic implicants would be assigned binary values 4.4 Optimizing the Driving Machine
corresponding to an optimal input encoding. Strate- A technique complementary to the technique described
gies for optimal input encoding have been proposed [8]. in the previous section can be used to decrease the com-
Heuristics for output encoding to reduce A's complexity, plexity of the driving machine, A. Here, states in the
as in [7], can also be used. driven machine B are split. Splitting these states in

It has been determined experimentally that re- B results in new degrees of freedom in expanding the
encoding affects the relative complexities of the ma- outputs of the edges in A. Output expansion results in
chines by as much as 25%. However, the number of reducing the number of states and the complexity of the
states in the machines is unchanged. driving machine A.

4.3 Optimizing the Driven Machine bAgain, the symbolic output implicants of A cannot
Consider again the cascaded pair of Figure 5. The sym- be arbitrarily merged, since one has to maintain the
bolic implicants INTi constitute the means of informa- terminal behavior of A - B. The following theorem
tion flow from A to B. It is conceivable that for some is a statement of the conditions required for implicant

pair of states (qj, q2) E B, a particular input vector merging to be possible.
INTx is required as the first vector in each distinguish- Theorem 4.2 : Given a cascade A - B. let a tran-
ing sequence for the pair (For instance, INT1 is required sition edge e E A assert the symbolic output op. When
to distinguish qbl and qb3 in Figure 5). If one were to A makes the transition e, let the possible states B can
modify A so as to produce INTz' $ INTz when B is be in be Q(B, Aj).
in q, and INTx otherwise, the distinguishing sequences V q E Q(B, Ale) 3 oq" I (fanin(oq, q) =
are invalidated. q, becomes equivalent to q2 and B can
be reduced. This is the basic process behind the tech- fanin(op, q) && output(oqC, q) = output(o. q)
nique described in this section. 11 (EFI(q) n E(B, AIEq'))

The algorithm identifies symbolic implicants which (Ert(q) n E(B, Ale)) = 0,

when split up result in state reductions in B. The num- then e- > output can be expanded to (oqC, or). EqE

is the set of transition edges asserting output oqe ,

E(B, AIE,*) (E(3 , Ale)) is the set of transitions B can Ex pi po M C I sta i
make when A is making the transitions E, (e). Iexi'I I ** -I

xI 1T 14 1 XUI I - I T - 1 7U
Proof: We split each q E Q(B, Alt) for which an ex I - 1 T[0
oqe cannot be found such that (fanin(oqe , q) = e I ZiI 4 1T 1 Y2
fanin(op, q) && output(o ', q) = output(op, q)), into eD I Z 1 10 L±L1.J
two states q' and q", initially duplicating the fanout of
q. q' receives as fanin EFJ(q) - (EF,(q) n E(B, Ale) ?
and q" receives (EFt(q) n E(B, Ale))- When B is in q Table 1: Statistics of Examples
it never receives oqe from A. Those fanout edges from
q" can be deleted. This means that the condition for appropriate outputs. Both B" and B' will be less corn-
expanding the outputs of edge e to (oqe, o) is satisfied plex than B. B' can then be collapsed into A; a new
(Section 3). Q.E.D. machine corresponding to the direct product of A and

Splitting states in B has the effect of introducing new B' will be obtained, that drives B". If latches exist
output don't cares for A, which can reduce the complex- initially, between A and B then flattening is more com-
ity of A. If for each differentiating sequence for a pair of plicated, since a latch itself represents a two-state finite

SA, each pair of co-edges, el, e2 that state machine. The product of A, the latches and B'states q1 , q2 E _A, ehaspitoo be-dconstructed.t as

sert diTerent outputs are expanded so e1 - > output D has to be constructed.
e2- > output or e2 - > output D ej- > output, then Partial collapsing will result in a reduction of com-
q and q2 can be merged in A. plexity in the driven machine in a cascade, but can

The strategy used in optimization is to remove a par- significantly increase the complexity of the driving ma-
ticular symbolic output in A by operating on all edges chine. It has limited uses, but is applicable in cases
that assert this particular output. where the driven machine is significantly more complex

than the driving machine.
1. The STG of A is analyzed to find which of the The flattened machine can be re-decomposed in a cas-

symbolic outputs appear (as last vectors) in most cade using the classical decomposition algorithms of [5].
differentiating sequences. One particular symbolic General decomposition algorithms have been recently
output is picked, namely op. proposed [4], that produce two interacting submachines

A - B from the original description, attempting to
2. All the transitions in A, Ep, that assert op are minimize the complexities of the submachines. These al-

found. For each e E Ep, the set of states B can be gorithms are more powerful than those in [51, since th
in, after A makes transition e, Q(B, Ale), is found. interaction between the submachines is two-way rather

than uni-directional. Using these decomposition algo-
3. The fanouts of states in Q(B, Ale) are analyzed to rithms allows more global optimization at the expense

pick a symbolic output oq' : op that produces the of loss of control over the optimization and the ability
same next states and outputs as op, in a maximum to handle large circuits.
number of Q(B, Ale). 5 Results

4. For each q E Q(B, Ale) for which oq- and op produce We have run several examples to evaluate the optimiza-
different next states or outputs, the fanin of q is tion strategies and algorithms described in Sections 3
checked for a possible split as per Theorem 4.2. If and 4. In Table 1, the statistics of the sequential circuits
so, go to Step 2 and pick a new edge e. Else, go to we experimented with are given. All these circuits were
Step 4 and pick a new oqe. If all possible oqe have obtained by interconnecting the finite state machines
been exhausted, go to Step 1 and pick a new op . of the MCNC 1987 Logic Synthesis Workshop bench-

5. Split states in B corresponding to the selected op mark set. In Table 1, the number of primary inputs
and o e , V e E Ep. (pi) and primary outputs (po), the number of separate

machines (mac) and the number of states in each ma-
While this algorithm does not guarantee reduction in chine in the circuit (states) are indicated for each exam-
the number of states in A, it guarantees reduction in A's ple. The number of intermediate, non-observable/non-
complexity on completion, since A now asserts a fewer controllable lines (int) and the total number of literals
number of symbolic outputs. Generally, a reduction in (lit) after state assignment using MUSTANG [3] and
states is also obtained, multi-level combinational optimization using MIS [2] are

also given.
4.5 Partial Collapsing We first give results from using the don't care ex-
When the driven machine B in a cascade A -* B has ploitation algorithms, in Table 2. For each circuit, the
multiple outputs, its complexity can be reduced by col- number of states in each of the machines and the total
lapsing or flattening one or more outputs into A. literal count is given, as well as the CPU time required

An output of B is selected and two separate machines for optimization on a VAX 11/8650 (m stands for min-
B' and B" operating in parallel are constructed, with utes). Significant reductions in circuit complexity have
B' producing the single selected output and B" the re- been obtained. W
maining. The STG of B can be initially duplicated for We used the re-encoding algorithms of Section 4.2
B' and B" and then re-minimized after removing the on the cascaded pairs. In Table 3, the literal counts

Ex mac states lt ix I M M7
[M __ j [time I_ Iti[sta [lit I sta J1t I time

I Iex -1 1 exi 14 1 91I 1 5U I bb I - T - . [
ex2 7 Y 11 - 14.m I T e2 T 136 1 -1 1 U2 - - 2- 8

ex4 3 19 1F 1 Ll i 11.117171 ex4 '= TU9 I rW 1W 1 4TT -m1exa 3F 1-_ IU-exT I6 71smI 2 I 47 " .1m

Table 2: Results Via Don't Care Exploitation Table 5: Optimizing the Driving Machine

Tix (JIJI N INPU I I' 7 Acknowledgements
IMi IM 1Ml I M2 I Nil I M2 The interesting discussions with Tony Ma and Richard

_ lit lit lit lit it lit Newton on sequential circuit optimization are acknowl-
exl 1 141 3 I 1 49: 1 117 1 edged. Pranav Ashar and Robert Brayton offered con-

Iex2 1 210 1 1115 1 2_ 1 1 10_ 1 MIS I I_ structive criticisms on an early draft of this manuscript.
ex3 I 1 1 015 1 149 1 bl I This research was supported in part by the Defense

Advanced Research Projects Agency under contract

Table 3: Results using Re-encoding N00014-87-K-0825.

References
1I I Is M ht 1 I t I t [1] D. B. Armstrong. A programmed algorithmI -a I lit I s ta I lit I s 1 Hit timefor assigning internal codes to sequential ma-
ex2 19 194 .1mff1 2.2m chines. In IRE Transactions oa Electron Computers,
exW 11 12 1 4T 7 2im pages 466-472, August 1962.ex4 19 1 31 101i 4.1
exT 11 134 :O 7 4 4.2 [2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

and A. Wang. Mis: a multiple-level logic opti-
mization system. In IEEE Transactions on CAD,

Table 4: Optimizing the Driven Machine pages 1062-1081, November 1987.

(31 S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelh. Mustang: state assignment

for each of the two machines in the circuit originally of finite state machines targeting multi-level logic
(orig.) and the extreme cases of re-encoding (input and implementations. In IEEE Transactions on CAD.
output) are given. As before, the literal counts are af- pages 1290-1300, December 1988.
ter state assignment and logic optimization. As can be
seen, re-encoding affects the complexity of the individ- [4] S. Devadas and A. R. Newton. Decomposition
ual machines by as much as 25%. Cascade exl, ior and factorization of sequential firite 11.dLt machines.
instance, would be best implemented using an input en- In Int'l Conference on Computer-Aided Design,
coded driven machine so as to make the complexities of November 1988.
the driven and driving machines comparable. [5] J. Hartmanis and R. E. Stearns. Algebraic Struc

Finally, we present results using the logic migration lure Theory of Sequential Machines. Prentice-Hall,
algorithms of Section 4.3 and 4.4. The states in the in- Englewood Cliffs, N. J., 1966.
dividual machines of a sequential circuit can be reduced
or increased using these algorithms. In Tables 4 and [6] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Opti-
5, the number of states in the optimized machines and mizing synchronous circuitry by retiming. In Proc.
the new literal counts are given using the strategies of of Third CalTech Conference on VLSI, March 1983.
Section 4.3 and 4.4, respectively. As with re-encoding,
solutions in between these extremes can be obtained - [7] G. De Michel. Symbolic design of combinational
however, the numbers of Tables 4 and 5 illustrate the and sequential logic circuits implemented by two-rnein capabilities of the proposed algorithms, level macros. In IEEE Transactions on CAD.
range pages 597--616, September 1986.

[8] G. De Micheli, R. K. Brayton, and A. Sangiovanni-
6 Conclusions Vincentelli. Optimal state assignment of finitestate machines. In IEEE Transactions on CAD.
We presented algorithms and techniques for the area page 269-285, Jl 1985.
and pcrformance op.~iiiation of inter(onnected finite
state machine structures. These algorithms include [9] M. C. Paul and S. H. Unger. Minimizing the num-
don't care exploitation techniques as wcll as logic mi- ber of states in incompletely specified sequential cir-
gration techniques across latch boundaries in interact- cuits. In IRE Transactions on Electronic Comput-
ing sequential structures. The results we have obtained ers, pages 356--357, September 1959.
using these algorithms thus far are encouraging.

